"Pidduck polynomial" meaning in All languages combined

See Pidduck polynomial on Wiktionary

Noun [English]

Forms: Pidduck polynomials [plural]
Etymology: Introduced by Pidduck (1910–1912). Head templates: {{en-noun}} Pidduck polynomial (plural Pidduck polynomials)
  1. (mathematics) Any of a group of polynomials sₙ(x) given by the generating function displaystyle ∑ₙ(s_n(x))/(n!)tⁿ=((1+t)/(1-t))ˣ(1-t)⁻¹. Categories (topical): Mathematics
    Sense id: en-Pidduck_polynomial-en-noun-jtv~YcMu Categories (other): English entries with incorrect language header, Pages with 1 entry, Pages with entries Topics: mathematics, sciences

Inflected forms

{
  "etymology_text": "Introduced by Pidduck (1910–1912).",
  "forms": [
    {
      "form": "Pidduck polynomials",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {},
      "expansion": "Pidduck polynomial (plural Pidduck polynomials)",
      "name": "en-noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "senses": [
    {
      "categories": [
        {
          "kind": "other",
          "name": "English entries with incorrect language header",
          "parents": [
            "Entries with incorrect language header",
            "Entry maintenance"
          ],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with 1 entry",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with entries",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Mathematics",
          "orig": "en:Mathematics",
          "parents": [
            "Formal sciences",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        }
      ],
      "glosses": [
        "Any of a group of polynomials sₙ(x) given by the generating function displaystyle ∑ₙ(s_n(x))/(n!)tⁿ=((1+t)/(1-t))ˣ(1-t)⁻¹."
      ],
      "id": "en-Pidduck_polynomial-en-noun-jtv~YcMu",
      "links": [
        [
          "mathematics",
          "mathematics"
        ],
        [
          "polynomial",
          "polynomial"
        ],
        [
          "generating function",
          "generating function"
        ]
      ],
      "raw_glosses": [
        "(mathematics) Any of a group of polynomials sₙ(x) given by the generating function displaystyle ∑ₙ(s_n(x))/(n!)tⁿ=((1+t)/(1-t))ˣ(1-t)⁻¹."
      ],
      "topics": [
        "mathematics",
        "sciences"
      ]
    }
  ],
  "word": "Pidduck polynomial"
}
{
  "etymology_text": "Introduced by Pidduck (1910–1912).",
  "forms": [
    {
      "form": "Pidduck polynomials",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {},
      "expansion": "Pidduck polynomial (plural Pidduck polynomials)",
      "name": "en-noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "senses": [
    {
      "categories": [
        "English countable nouns",
        "English entries with incorrect language header",
        "English eponyms",
        "English lemmas",
        "English multiword terms",
        "English nouns",
        "Pages with 1 entry",
        "Pages with entries",
        "en:Mathematics"
      ],
      "glosses": [
        "Any of a group of polynomials sₙ(x) given by the generating function displaystyle ∑ₙ(s_n(x))/(n!)tⁿ=((1+t)/(1-t))ˣ(1-t)⁻¹."
      ],
      "links": [
        [
          "mathematics",
          "mathematics"
        ],
        [
          "polynomial",
          "polynomial"
        ],
        [
          "generating function",
          "generating function"
        ]
      ],
      "raw_glosses": [
        "(mathematics) Any of a group of polynomials sₙ(x) given by the generating function displaystyle ∑ₙ(s_n(x))/(n!)tⁿ=((1+t)/(1-t))ˣ(1-t)⁻¹."
      ],
      "topics": [
        "mathematics",
        "sciences"
      ]
    }
  ],
  "word": "Pidduck polynomial"
}

Download raw JSONL data for Pidduck polynomial meaning in All languages combined (1.0kB)


This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2024-11-06 from the enwiktionary dump dated 2024-10-02 using wiktextract (fbeafe8 and 7f03c9b). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.

If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.