"Newton's method" meaning in All languages combined

See Newton's method on Wiktionary

Proper name [English]

Etymology: Named after Isaac Newton. Head templates: {{en-proper noun}} Newton's method
  1. (algebra, calculus) A method for finding successively better approximations to the roots (or zeroes) of a real-valued function. Wikipedia link: Isaac Newton, Newton's method Categories (topical): Algebra, Calculus, Functions Synonyms: Newton-Raphson method
    Sense id: en-Newton's_method-en-name-Io3ty6QA Categories (other): English entries with incorrect language header, Pages with 1 entry, Pages with entries, Isaac Newton Topics: algebra, calculus, mathematics, sciences
{
  "etymology_text": "Named after Isaac Newton.",
  "head_templates": [
    {
      "args": {},
      "expansion": "Newton's method",
      "name": "en-proper noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "name",
  "senses": [
    {
      "categories": [
        {
          "kind": "other",
          "name": "English entries with incorrect language header",
          "parents": [
            "Entries with incorrect language header",
            "Entry maintenance"
          ],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with 1 entry",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with entries",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Algebra",
          "orig": "en:Algebra",
          "parents": [
            "Mathematics",
            "Formal sciences",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        },
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Calculus",
          "orig": "en:Calculus",
          "parents": [
            "Mathematical analysis",
            "Mathematics",
            "Formal sciences",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        },
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Functions",
          "orig": "en:Functions",
          "parents": [
            "Algebra",
            "Calculus",
            "Geometry",
            "Mathematical analysis",
            "Mathematics",
            "Formal sciences",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        },
        {
          "kind": "other",
          "langcode": "en",
          "name": "Isaac Newton",
          "orig": "en:Isaac Newton",
          "parents": [],
          "source": "w"
        }
      ],
      "glosses": [
        "A method for finding successively better approximations to the roots (or zeroes) of a real-valued function."
      ],
      "id": "en-Newton's_method-en-name-Io3ty6QA",
      "links": [
        [
          "algebra",
          "algebra"
        ],
        [
          "calculus",
          "calculus"
        ],
        [
          "method",
          "method"
        ],
        [
          "approximation",
          "approximation"
        ],
        [
          "root",
          "root"
        ],
        [
          "zero",
          "zero"
        ],
        [
          "real-valued",
          "real-valued"
        ],
        [
          "function",
          "function"
        ]
      ],
      "raw_glosses": [
        "(algebra, calculus) A method for finding successively better approximations to the roots (or zeroes) of a real-valued function."
      ],
      "synonyms": [
        {
          "word": "Newton-Raphson method"
        }
      ],
      "topics": [
        "algebra",
        "calculus",
        "mathematics",
        "sciences"
      ],
      "wikipedia": [
        "Isaac Newton",
        "Newton's method"
      ]
    }
  ],
  "word": "Newton's method"
}
{
  "etymology_text": "Named after Isaac Newton.",
  "head_templates": [
    {
      "args": {},
      "expansion": "Newton's method",
      "name": "en-proper noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "name",
  "senses": [
    {
      "categories": [
        "English entries with incorrect language header",
        "English eponyms",
        "English lemmas",
        "English multiword terms",
        "English proper nouns",
        "English uncountable nouns",
        "Pages with 1 entry",
        "Pages with entries",
        "en:Algebra",
        "en:Calculus",
        "en:Functions",
        "en:Isaac Newton"
      ],
      "glosses": [
        "A method for finding successively better approximations to the roots (or zeroes) of a real-valued function."
      ],
      "links": [
        [
          "algebra",
          "algebra"
        ],
        [
          "calculus",
          "calculus"
        ],
        [
          "method",
          "method"
        ],
        [
          "approximation",
          "approximation"
        ],
        [
          "root",
          "root"
        ],
        [
          "zero",
          "zero"
        ],
        [
          "real-valued",
          "real-valued"
        ],
        [
          "function",
          "function"
        ]
      ],
      "raw_glosses": [
        "(algebra, calculus) A method for finding successively better approximations to the roots (or zeroes) of a real-valued function."
      ],
      "topics": [
        "algebra",
        "calculus",
        "mathematics",
        "sciences"
      ],
      "wikipedia": [
        "Isaac Newton",
        "Newton's method"
      ]
    }
  ],
  "synonyms": [
    {
      "word": "Newton-Raphson method"
    }
  ],
  "word": "Newton's method"
}

Download raw JSONL data for Newton's method meaning in All languages combined (1.1kB)


This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2024-12-21 from the enwiktionary dump dated 2024-12-04 using wiktextract (d8cb2f3 and 4e554ae). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.

If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.