"Galois field" meaning in All languages combined

See Galois field on Wiktionary

Noun [English]

Forms: Galois fields [plural]
Etymology: Named after French mathematician Évariste Galois (1811–1832). Etymology templates: {{named-after/list|mathematician||||}} mathematician, {{!}} |, {{lang|en|Évariste Galois}} Évariste Galois, {{named-after|en|Évariste Galois|born=1811|died=1832|nat=French|occ=mathematician|wplink==}} Named after French mathematician Évariste Galois (1811–1832) Head templates: {{en-noun}} Galois field (plural Galois fields)
  1. (algebra) A finite field; a field that contains a finite number of elements. Wikipedia link: Finite field Categories (topical): Algebra Hypernyms: perfect field
    Sense id: en-Galois_field-en-noun-XVm7itKZ Categories (other): English entries with incorrect language header, Pages with 1 entry, Pages with entries Topics: algebra, mathematics, sciences

Inflected forms

Alternative forms

{
  "etymology_templates": [
    {
      "args": {
        "1": "mathematician",
        "2": "",
        "3": "",
        "4": "",
        "5": ""
      },
      "expansion": "mathematician",
      "name": "named-after/list"
    },
    {
      "args": {},
      "expansion": "|",
      "name": "!"
    },
    {
      "args": {
        "1": "en",
        "2": "Évariste Galois"
      },
      "expansion": "Évariste Galois",
      "name": "lang"
    },
    {
      "args": {
        "1": "en",
        "2": "Évariste Galois",
        "born": "1811",
        "died": "1832",
        "nat": "French",
        "occ": "mathematician",
        "wplink": "="
      },
      "expansion": "Named after French mathematician Évariste Galois (1811–1832)",
      "name": "named-after"
    }
  ],
  "etymology_text": "Named after French mathematician Évariste Galois (1811–1832).",
  "forms": [
    {
      "form": "Galois fields",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {},
      "expansion": "Galois field (plural Galois fields)",
      "name": "en-noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "senses": [
    {
      "categories": [
        {
          "kind": "other",
          "name": "English entries with incorrect language header",
          "parents": [
            "Entries with incorrect language header",
            "Entry maintenance"
          ],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with 1 entry",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with entries",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Algebra",
          "orig": "en:Algebra",
          "parents": [
            "Mathematics",
            "Formal sciences",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        }
      ],
      "examples": [
        {
          "text": "The Galois field #x5C;mathrm#x7B;GF#x7D;(pⁿ) has order pⁿ and characteristic p.",
          "type": "example"
        },
        {
          "text": "The Galois field #x5C;mathrm#x7B;GF#x7D;(pⁿ) is a finite extension of the Galois field #x5C;mathrm#x7B;GF#x7D;(p) and the degree of the extension is n.",
          "type": "example"
        },
        {
          "text": "The multiplicative subgroup of a Galois field is cyclic.",
          "type": "example"
        },
        {
          "text": "A Galois field #x5C;mathbb#x7B;F#x7D;#x5F;#x7B;pⁿ#x7D; is isomorphic to the quotient of the polynomial ring #x5C;mathbb#x7B;F#x7D;#x5F;p adjoin x over the ideal generated by a monic irreducible polynomial of degree n. Such an ideal is maximal and since a polynomial ring is commutative then the quotient ring must be a field. In symbols: #x5C;mathbb#x7B;F#x7D;#x5F;#x7B;pⁿ#x7D;#x5C;cong#x7B;#x5C;mathbb#x7B;F#x7D;#x5F;p#x5B;x#x5D;#x5C;over(#x5C;hatf#x5F;n(x))#x7D;.",
          "type": "example"
        },
        {
          "text": "1958 [Chelsea Publishing Company], Hans J. Zassenhaus, The Theory of Groups, 2013, Dover, unnumbered page,\nA field with a finite number of elements is called a Galois field.\nThe number of elements of the prime field k contained in a Galois field K is finite, and is therefore a natural prime p."
        },
        {
          "ref": "2001, Joseph E. Bonin, A Brief Introduction To Matroid Theory, retrieved 2016-05-05:",
          "text": "The case of most interest to us will be that in which F is a finite field, the Galois field GF(q) for some prime power q. If q is prime, this field is #x5C;mathbb#x7B;Z#x7D;#x5F;q, the integers 0,1,#x5C;dots,q-1 with arithmetic modulo q.",
          "type": "quote"
        },
        {
          "text": "2006, Debojyoti Battacharya, Debdeep Mukhopadhyay, D. RoyChowdhury, A Cellular Automata Based Approach for Generation of Large Primitive Polynomial and Its Application to RS-Coded MPSK Modulation, Samira El Yacoubi, Bastien Chopard, Stefania Bandini (editors), Cellular Automata: 7th International Conference, Proceedings, Springer, LNCS 4173, page 204,\nGeneration of large primitive polynomial over a Galois field has been a topic of intense research over the years. The problem of finding a primitive polynomial over a Galois field of a large degree is computationaly expensive and there is no deterministic algorithm for the same."
        }
      ],
      "glosses": [
        "A finite field; a field that contains a finite number of elements."
      ],
      "hypernyms": [
        {
          "word": "perfect field"
        }
      ],
      "id": "en-Galois_field-en-noun-XVm7itKZ",
      "links": [
        [
          "algebra",
          "algebra"
        ],
        [
          "finite field",
          "finite field"
        ],
        [
          "finite",
          "finite"
        ],
        [
          "elements",
          "elements"
        ]
      ],
      "raw_glosses": [
        "(algebra) A finite field; a field that contains a finite number of elements."
      ],
      "topics": [
        "algebra",
        "mathematics",
        "sciences"
      ],
      "wikipedia": [
        "Finite field"
      ]
    }
  ],
  "word": "Galois field"
}
{
  "etymology_templates": [
    {
      "args": {
        "1": "mathematician",
        "2": "",
        "3": "",
        "4": "",
        "5": ""
      },
      "expansion": "mathematician",
      "name": "named-after/list"
    },
    {
      "args": {},
      "expansion": "|",
      "name": "!"
    },
    {
      "args": {
        "1": "en",
        "2": "Évariste Galois"
      },
      "expansion": "Évariste Galois",
      "name": "lang"
    },
    {
      "args": {
        "1": "en",
        "2": "Évariste Galois",
        "born": "1811",
        "died": "1832",
        "nat": "French",
        "occ": "mathematician",
        "wplink": "="
      },
      "expansion": "Named after French mathematician Évariste Galois (1811–1832)",
      "name": "named-after"
    }
  ],
  "etymology_text": "Named after French mathematician Évariste Galois (1811–1832).",
  "forms": [
    {
      "form": "Galois fields",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {},
      "expansion": "Galois field (plural Galois fields)",
      "name": "en-noun"
    }
  ],
  "hypernyms": [
    {
      "word": "perfect field"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "senses": [
    {
      "categories": [
        "English countable nouns",
        "English entries with incorrect language header",
        "English eponyms",
        "English lemmas",
        "English multiword terms",
        "English nouns",
        "English terms with quotations",
        "English terms with usage examples",
        "Pages with 1 entry",
        "Pages with entries",
        "en:Algebra"
      ],
      "examples": [
        {
          "text": "The Galois field #x5C;mathrm#x7B;GF#x7D;(pⁿ) has order pⁿ and characteristic p.",
          "type": "example"
        },
        {
          "text": "The Galois field #x5C;mathrm#x7B;GF#x7D;(pⁿ) is a finite extension of the Galois field #x5C;mathrm#x7B;GF#x7D;(p) and the degree of the extension is n.",
          "type": "example"
        },
        {
          "text": "The multiplicative subgroup of a Galois field is cyclic.",
          "type": "example"
        },
        {
          "text": "A Galois field #x5C;mathbb#x7B;F#x7D;#x5F;#x7B;pⁿ#x7D; is isomorphic to the quotient of the polynomial ring #x5C;mathbb#x7B;F#x7D;#x5F;p adjoin x over the ideal generated by a monic irreducible polynomial of degree n. Such an ideal is maximal and since a polynomial ring is commutative then the quotient ring must be a field. In symbols: #x5C;mathbb#x7B;F#x7D;#x5F;#x7B;pⁿ#x7D;#x5C;cong#x7B;#x5C;mathbb#x7B;F#x7D;#x5F;p#x5B;x#x5D;#x5C;over(#x5C;hatf#x5F;n(x))#x7D;.",
          "type": "example"
        },
        {
          "text": "1958 [Chelsea Publishing Company], Hans J. Zassenhaus, The Theory of Groups, 2013, Dover, unnumbered page,\nA field with a finite number of elements is called a Galois field.\nThe number of elements of the prime field k contained in a Galois field K is finite, and is therefore a natural prime p."
        },
        {
          "ref": "2001, Joseph E. Bonin, A Brief Introduction To Matroid Theory, retrieved 2016-05-05:",
          "text": "The case of most interest to us will be that in which F is a finite field, the Galois field GF(q) for some prime power q. If q is prime, this field is #x5C;mathbb#x7B;Z#x7D;#x5F;q, the integers 0,1,#x5C;dots,q-1 with arithmetic modulo q.",
          "type": "quote"
        },
        {
          "text": "2006, Debojyoti Battacharya, Debdeep Mukhopadhyay, D. RoyChowdhury, A Cellular Automata Based Approach for Generation of Large Primitive Polynomial and Its Application to RS-Coded MPSK Modulation, Samira El Yacoubi, Bastien Chopard, Stefania Bandini (editors), Cellular Automata: 7th International Conference, Proceedings, Springer, LNCS 4173, page 204,\nGeneration of large primitive polynomial over a Galois field has been a topic of intense research over the years. The problem of finding a primitive polynomial over a Galois field of a large degree is computationaly expensive and there is no deterministic algorithm for the same."
        }
      ],
      "glosses": [
        "A finite field; a field that contains a finite number of elements."
      ],
      "links": [
        [
          "algebra",
          "algebra"
        ],
        [
          "finite field",
          "finite field"
        ],
        [
          "finite",
          "finite"
        ],
        [
          "elements",
          "elements"
        ]
      ],
      "raw_glosses": [
        "(algebra) A finite field; a field that contains a finite number of elements."
      ],
      "topics": [
        "algebra",
        "mathematics",
        "sciences"
      ],
      "wikipedia": [
        "Finite field"
      ]
    }
  ],
  "word": "Galois field"
}

Download raw JSONL data for Galois field meaning in All languages combined (3.7kB)


This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2024-11-06 from the enwiktionary dump dated 2024-10-02 using wiktextract (fbeafe8 and 7f03c9b). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.

If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.